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Summary

Because of the rapid proliferation of Al-powered technologies in education, edu-
cators and others face urgent challenges around evaluating the potential impacts
of these technologies on teaching and learning. Bellwether’s October 2025 report,
Measuring Artificial Intelligence in Education, aims to address such challenges by
promoting logic models as a framework for moving beyond superficial metrics to-
ward more robust evidence-based educational outcomes. Logic models involve de-
termining four main components—inputs, activities, outputs, and outcomes—and
they have a long history of use in program evaluation. The logic-model approach,
however, has very real limitations that are not fully addressed in the report. Just
as importantly, the report simply assumes that AI should indeed be integrated into
education. That is, logic models function here as a methodological heuristic for en-
suring Al fulfills its taken-for-granted potential. By positioning logic models as val-
ue-neutral, the report overlooks how such approaches ignore contextual complexity
and the potential for unintended harms. Rather than offering critical guidance for
assessing AI’s role in education, the report provides methodological cover for prede-
termined conclusions about AI’s inevitability and desirability. Policymakers seeking
rigorous, evidence-based approaches will find little support in what is, at its core, a
promotional document.
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I. Introduction

The ongoing expansion of artificial intelligence apps, services, and platforms in K-12
education has raised challenging questions about how to evaluate their impacts on
teaching and learning, with federal policy encouraging Al use intensifying the chal-
lenge.! Despite such federal pressure—itself matched by that of the companies be-
hind the profusion of AI tools in education>—educational leaders report significant
gaps in policy guidance. Indeed, just 40% of educators say their districts have com-
municated Al policies to them.3

The stakes surrounding AI implementation are about more than questions of effi-
cacy alone. In part, this is due to the role educational evaluation and accountability
systems now play as central mechanisms for resource allocation, federal funding
decisions, and school improvement interventions in response to policies like the
Every Student Succeeds Act.4 Yet determining how best to measure Al’s impact in
education remains difficult, since conventional approaches often focus narrowly on
questions of efficacy without examining the larger conditions that shape how these
technologies are designed, deployed, and applied in educational settings.5

Against this backdrop, the education policy nonprofit Bellwether has released var-
ious reports in recent years addressing the implications of artificial intelligence in
K-12 schools.® Authored by Michelle Croft, Amy Chen Kulesa, Marisa Mission, and
Mary K. Wells, the organization’s most recent report, Measuring Artificial Intelli-
gence in Education, reflects a focus on questions of evaluation and measurement in
assessing the educational impact of AL.7 Specifically, the report advocates for the use
of logic models as an objective, systematic framework for assessing the outcomes of
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Al integration in K-12 education.

II. Findings and Conclusions of the Report

The report finds that existing approaches to measuring and evaluating Al tools in
education are insufficient, largely because they tend to focus on easily tracked met-
rics (e.g., login rates) as opposed to more direct measures of student learning. In
response, the report advocates for the systematic use of logic models—an approach
with a long history in program evaluation®—as an objective methodology for measur-
ing and evaluating the outcomes of a given Al tool’s use in K-12 education. The cen-
tral argument is that by turning focus from superficial outputs to more meaningful
outcomes, and doing so according to the objective structure provided by logic mod-
els, educational stakeholders can make rigorous, evidence-based decisions about Al
adoption and avoid relying on “hype, popularity, and marketing claims.”®

Logic Models as the Solution

The report positions logic models as a solution for what it acknowledges as a com-
mon criticism of Al in education, namely that such tools are “solutions in search of
a problem,”° often designed more to highlight AI capabilities than to address edu-
cational challenges. A logic model, the report explains, clarifies the theory of change
animating an intervention and provides a structured framework for articulating
and measuring its anticipated outcomes. The report details four main components
of a logic model: inputs, activities, outputs, and outcomes, with outcomes further
categorized as short-term (within a year), intermediate-term (one-four years), and
long-term (over four years)." Because they require developers and school leaders
to articulate their expectations about how an AI tool will be used and what changes
they expect to see, the report suggests logic models can enable stakeholders to think
critically about whether and how AI adoption supports desired educational improve-
ments.

Multiple Metrics and Measurement Frameworks

The report emphasizes the importance of employing multiple metrics when devel-
oping a logic model for Al integration, under the idea that measurement variety
helps avoid overreliance on weak measures like self-reported surveys, which, the
report suggests, can contain errors or bias.'* Multiple metrics also enable additional
ways to test assumptions with empirical evidence. Also, because long-term changes
in educational outcomes occur over years, the report stresses the need for leading
indicators that can signal progress. To do this, the report proposes evaluating Al
tools across five dimensions: reach, efficiency, effectiveness, expanded capabilities,

http://nepc.colorado.edu/review/measuring-ai 5o0f 13




and unbiased outcomes. It includes sample metrics for each dimension along with
detailed examples of how these metrics might evolve from immediate indicators to
long-term educational impact.

Barriers to Better AI Measurement

The report identifies three primary barriers that work against effective evaluation of
Al tools in education: defining what to measure, logistical and legal obstacles to data
collection, and insufficient market demand for rigorous empirical evidence. Taken
together, these challenges often incentivize decision-makers to adopt tools based on
peer pressure or marketing, as opposed to evidence.™

Addressing Challenges at the Stakeholder Level

In response to measurement barriers, the report offers targeted recommendations
for three key stakeholder groups: District and school leaders should align Al tool
selection with institutional objectives and establish accountability measures early in
procurement; Al developers should prioritize transparency about specific problems
their tools address; and philanthropic funders should support rigorous empirical
research and shared infrastructure for objective evaluation.

Overall Conclusions

The report concludes that effective AI measurement and evaluation require balanc-
ing the drive for innovation with evidence-based decision-making processes. It ar-
gues that a focus on educational outcomes over superficial metrics can enable stake-
holders to ensure that the Al tools they adopt actually serve teachers and students.
The report positions logic models as a guiding heuristic for aligning AI implementa-
tion with meaningful educational impact, emphasizing their capacity to enable deci-
sion-makers to base Al adoption on durable outcomes.*

II1. The Report’s Rationale for Its Findings and Conclusions

The report’s underlying rationale is that logic models provide a systematic, objective
response to what it positions as a crucial measurement problem for Al in education.
It argues that current measurement practices focus on superficial “outputs,” like log-
in rates, rather than deeper educational “outcomes,” leaving schools vulnerable to
marketing and peer conformity when adopting Al tools. Guided by what it describes
as “expert interviews, case examples, and proven evaluation methods,” the report
centers logic models as a tried-and-true methodology for sidestepping hype because
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they require stakeholders to articulate clear theories of change that align AI tools
with desired educational impacts. This rationale leads to the report’s conclusion
that focused guidance for stakeholders can help enact systemic changes to ensure Al
adoption prioritizes educational outcomes over technological capabilities.

IV. The Report’s Use of Research Literature

The report’s claims about its grounding in “expert interviews, case examples, and
proven evaluation methods”™” are weakened by limited empirical research. Though
not without relevant citations—such as the American Psychological Association’s
Standards for Educational and Psychological Testing'® and select peer-reviewed
articles on measurement bias' and student engagement>°—the report primarily re-
lies on practitioner-facing materials,?! industry publications,?? and Bellwether’s own
published reports on Al in education. This overreliance on non-peer-reviewed sourc-
es would perhaps be less problematic if the report presented itself as a practitioner
guide, but its unqualified claims about “proven evaluation methods” imply a more
rigorous research foundation than what it actually provides.23 This mismatch be-
tween the report’s sweeping prescriptions about AI measurement practices and its
limited engagement with existing research raises questions about the credibility of
its guidance for stakeholders in search of evidence-based thinking about Al adop-
tion.

The report’s treatment of logic models as straightforward, technical solutions ig-
nores foundational and contemporary literature on their inherent complexity and
limitations, particularly in educational settings. Research has emphasized that logic
modeling can lead stakeholders to focus on overly simplistic questions while encour-
aging hyperfocus on end outcomes that elide implementation complexities.?4 Re-
search has also consistently identified fundamental limitations: Logic models strug-
gle with dynamic contexts, use linear structures that fail to account for emergence
and recursion, ignore competing causal mechanism, and often overstate or under-
state impact based on narrowly scoped interventions.2?s Logic models can also under-
mine critical thinking by assuming interventions are sensible responses to challeng-
es, while hardening into static representations detached from changing contexts.2¢
Such limitations have crucial implications for AI in education, where technological
interventions enter into complex, dynamic school contexts that vary dramatically in
their infrastructures, cultures, and student populations. By not engaging with the
substantial scholarship investigating logic models across different settings, the re-
port misrepresents them as an unproblematic methodological solution when studies
across disciplines have consistently documented their contingency and limitations.

Even within the logic model tradition championed by the report, scholars have iden-
tified a crucial limitation it ignores: the failure to account for “dark logic,” or the
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undesirable, unintended outcomes or harms that interventions can inadvertently
precipitate.?” Though briefly acknowledging that AI tools may lead to harm, includ-
ing those related to privacy and bias,?® and positioning logic models as remedies for
them, the report does so without engaging with literature about how such frame-
works themselves can obscure or amplify negative impacts. The report’s light treat-
ment of research on AI’'s documented and potential harm reflects a serious omission
for a document providing evidence-centered guidance. Studies have demonstrated
systematic bias in automated scoring systems,?° algorithmic discrimination in facial
recognition systems,3° and the commodification of teachers’ emotional labor through
Al platforms that transform systemic problems into ones of individual efficiency.3
Such findings align with scholarship showing how ostensibly neutral technologies
can reproduce social harms within institutional settings.3? Had the report engaged
with such literature in more depth and breadth—that is, had it undertaken its own
practice of dark logic within the methodological tradition it claims—it may have de-
veloped a more robust framework for anticipating and measuring AI’s impacts, in-
cluding negative ones, in K-12 education.

V. Review of the Report’s Methods

The report’s methodology is fundamentally opaque. Despite asserting its grounding
in “expert interviews, case examples, and proven evaluation methods,”33 it provides
no account of how interview participants were selected, what questions were asked,
how long the interviews lasted, or what analytical approach was used to synthesize
findings into recommendations. This methodological vacuum is particularly iron-
ic given the report’s central assertion that educational stakeholders should look to
adopt more rigorous measurement practices for evaluating Al tools. What little can
be discerned about the process raises concern about bias, with the selection of in-
terview participants seeming to center voices from the technology, business, and
nonprofit sectors who may have financial or professional interests in AI adoption in
schools. Critical voices are also conspicuously absent. For a report that positions it-
self as an authoritative guide for educational decision-makers, this basic disjuncture
between what it preaches and what it practices is a fatal flaw that leaves its conclu-
sions unverifiable, its recommendations suspect.

VI. Review of the Validity of the Findings and Conclusions

The report identifies real challenges stakeholders face as Al tools proliferate in ed-
ucation. It is true, for example, that a narrow focus on superficial metrics like login
rates tells us little about whether an AI tool meaningfully supports learning. It cor-
rectly observes that schools are vulnerable to AI marketing hype and institutional

http://nepc.colorado.edu/review/measuring-ai 8 of 13




peer pressure when making technology adoption decisions.3* And the core argument
that evaluation processes should align AI adoption with a clear theory of change
responds to a legitimate need for systematic approaches to educational technology
assessment.3> These valid observations are, however, undermined by the report’s
own methodological shortcomings.

The report’s central problem is that it delivers no careful assessment of its own focal
premise: that logic models are the solution to AI measurement problems in educa-
tion. To be clear, the issue here is not with logic models themselves, which may hold
value in particular contexts. Rather, the issue lies in the report’s portrayal of them
as simple, straightforward, and value-neutral solutions, despite limited evidence of
their effectiveness in the context of assessing Al in education and no discussion of
their documented limitations and complexities. The report’s conclusions rest entire-
ly on unverifiable expert interviews that fail to meet basic standards of transparen-
cy.3¢

VII. Usefulness of the Report for Guidance
of Policy and Practice

The report concludes with the assertion that “the path forward requires balance:
embracing innovation while grounding choices in evidence,” promising that “AI can
move from a source of hype to a force for lasting improvement in teaching and learn-
ing.”s” This framing underscores a bias that runs throughout the report: Embracing
innovation is an unqualified good that does not require stakeholders to question
whether particular innovations merit embrace at all.3® The report offers a framework
that assumes Al integration is both inevitable and beneficial, which is the kind of
predetermined conclusion that rigorous policy guidance should help stakeholders
avoid.

As Al expands in K-12 education, decision-makers need guidance that can help them
identify tools that meaningfully advance learning. But they also need frameworks for
weighing risks against speculative benefits—logic models that undertake the kind of
dark logic that surfaces harms before they happen, and methods fit to reckon with
the social, technical, and political-economic aspects of AI while centering the wel-
fare of students, educators, and their communities.3° For stakeholders looking for a
critical, evidence-guided account of measuring Al in schools, this report offers little
more than sophisticated marketing disguised as policy guidance.
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